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Fig. 3. Plot of insertion loss and nonreciprocity versus applied mag-
netic field for film S78 in the Faraday-rotation Configuration with
standard-size circular yavegnide. The nonreciprocity curve is the
difference between the forward and reverse insertion-loss curves.
Film parameters: d = 2 #m, # = 5.3 X 104 cml/V. s, and n = 1.2 X
1016 c~-3.

I

siblv a better substrate for millimeter-wave transmissiml would be

qu=tz. Unfortunately, however, quartz is not compatible with the

recrystallization growth technique, because its thermal expansion

coefficient is considerably dtiferent than the coefficient for InSb,
and the InSb films tend to peel away from the quartz substrate.

FAR-4DAY-ROTATION MODE

!l’he Faraday-rotation mode configuration is shown in Fig. 1(b),
and results for the Faraday-rotation mode are shown in Fig. 3.
As is evident, large values of nonreciprocity are easily obtainable
at relatively low magnetic fields. Very disappointing, however,
are the relatively large values of insertion loss encountered, albeit
they are significantly lower than the values of insertion loss for
the field-displacement mode. The peak in transmission is expected
and corresponds to the magnetic-field value at which the Faraday

rotation in the InSb film is approximately equal to 4Zi0. It is near

this magnetic-field value that the nonreciprocity is a maximum

and would be the operating point of a practical isolater. The theory
of Faraday rotation in thin films, which is discussed in [4]–[7],

accounts for the large values of rotation by considering multiple
reflections within the film. The results in Fig. 3 were obtained on

samples in standard size TEII commercial waveguide (diameter is
3.58 mm). Measurements taken on samples in oversized guide (di-
ameter is 7.1 mm) did not produce significantly different results.
Essentially, the only method available to decrease the insertion loss iti
to make the film thinner. However, as the films are made thinner,
the nobilities decrease and the extrinsic carrier concentration in-
creases. The thickness of the films for which data are shown in Fig. 3

is 2.1 pm and is essentially as thin as the films can be grown md still
have acceptable nobilities and carrier concentrations. The insertion
loss due to a bare substrate in the Faraday-rotation mode is about
2 dB. A small decrease in insertion loss could be realized by using

a less 10SSY substrate material.

CONCLUSIONS

Large values of nonreciprocity were measured for the InSb films
in the Faraday-rotation mode, and these large values were ob-

tainable at reasonably low values of the applied magnetic field. An
insertion loss of 9 dB was measured, which includes 2 dB of atten-

uation due to the substrate, at a nonreciprocity of 10 dB. Commer-

cially available ferrite isolators in this frequency range have insertion

losses of 1.0 dB. Possibly, with a less Iossy substrate material and

with a high-mobility film which is 1 ~m or less thick, this figure
could be approached. Insertion lees with the field-displacement
mode was disappointingly large and all attempte to decrease it failed.
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Moment Method of Calculating Discontinuity Inductance

of Microstrip Right-hgled Bends

A. GOPINATH, MEMBER, IEEE, A~~ B. EASTER

Absfracf—A method of estimating quasi-static discontinuity in-

ductances in microstrip lines is outlined. Numerical results for

symmetric right-angle bends are presented and compare well with

experimental results.

I. INTRODUCTION

The etudy of microstrip discontinuities has resulted in several
papers [1]–[4] which evaluate the capacitive components of the
discontinuity equivalent circuits, under static conditions. Estimat-
ing the inductive components of these equivalent circuits has received

little attention to the present time. One method based on charge
estimates [5], [6] is not rigorous and the results and trends pub-
lished are not in agreement with experimental measurements ob-

tained by the method of a previous publication [7]. A second method
is the evaluation of these inductances based on a skht-effect formu-

lation [8], but several difficulties have been encountered in extend-

ing this method to the accurate evaluation of discontinuity induct-
ances. These have currently been resolved, and results are to be

published shortly [9]. The present short paper outlines an alternative
method based on an extension of the moment method, using current

loops se elements. The method also incorporates the excess current

(charge ) technique used by Benedek and Silvester [10] for preserv-

ing the accuracy of calculated parameters. This short paper outlines

the formulation used and presents specific results for symmetric
right-angled bends. It is hoped a subsequent paper will present a
comprehensive set of results of various other discontinuities.

II. STATEMENT OF PROBLEM

The moment method of inductance estimation outlined here can

be used for a variety of strip geometries, but is illustrated only for
the case of the symmetrical right-angle bend. We first define in the
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Fig. 1. Plan view of symmetric microstrip bend showing reference planes
PP’, PP(’ and QQ’, RR’. Strip width is w, ground plane spacing h.
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Fig. 2. Equivalent circuit of the symmetric ri~ht-angled bend in micro-
strip, ‘at the references planes PP’ and PP ‘ as defined in Fig. 1.

context of this bend the equivalent-circuit components that require
evaluation. In Fig. 1, the plan view of the microstrip bend is shown.
The bend occurs at the junction of two semi-infinite strips (X and
Y strips in Fig. 1). It is convenient to define the inductance of the

bend with respect to the reference planes F’P’. and PP”. However,

the fringing fields associated with the bend will extend a significant

distance beyond these reference planes. In order to calculate the

inductance it is necessary to introduce the reference planes QQ’,l?li!t

at distances 11,1.2from PP’ and PP”, respectively, where the current

and field distributions differ negligibly from the infinite-strip dis-

tribution. The bend inductance Lt, with respect to PP’,PP” can
then be determined from the total magnetic field energy between

QQ’,RR’ less an appropriate deduction for the lengths Zl,lz:

Lb = LQR – (Ll~_ ~ l~L~) (1)

where L~ is the inductance per meter of the infinite uniform strip.
The total bend capacitance C5 is similarly defined, and from the

symmetry of the structure, the equivalent circuit of the bend dis-
continuity is usually given as in Fig. 2 by a 2’ network. With thk

definition for Lb, it is possible for its numerical value to become

negative.

Benedek and Silvester [10] replace the series inductances in Fig. 2

by equivalent line lengths, which however, are not given. Associated
with these line lengths are capacitances which must be subtracted
from C6, which then changes the value of the shunt capacitance of

their equivalent circuit. Their calculations, however, only provide
cb and not thk modified capacitance, and therefore are valid only in
the circuit given in Fig. 2.

III. FORMULATION OF PROBLEM AND METHOD

OF SOLUTION

It will be assumed that the substrate of tbe microstrip line is

nonmagnetic, so that the presence of the substrate may be ignored
for the purpose of calculating the quasi-static inductance.

In order to obtain values which are relevant to high frequency

applications, it will be further assumed that the conducting strips
and ground plane have near-perfect conductivity, so that skin effect
is fully, established. It follows that the currents in the structure may
be considered to be surface currents, infinitely thin, having zero
divergence, and distributed such that the magnetic field normal to
the conductor surface is zero.

For the two-dimensional problem of straight uniform microstrip,
the correct distribution and inductance may be determined from
the charge and capacitance of a related electrostatic problem [11],

[12]. In the three-dmensional case of a discontinuity structure this
procedure is not available and it is necessary to work dkectly in
terms of the current distribution which is determined by means of

a governing equation corresponding to the condition outlined above.
The magnetic field energy of the structure is then computed.

If the reference planes QQ’,RR’ are chosen so as to include a
satisfactorily large proportion of the fringing field of the discon-

tinuity, then (1) will involve the relatively small difference of two

nearly equal numbers. However, the resulting loss of accuracy may

be reduced by a method analogous to that suggested by Benedek

and Silvester [10].

The procedure for calculating the inductance may be formulated

in the following manner.

1 ) Set up an assumed current distribution through the dk-

continuity which maintains detailed current continuity and results

in the infinite-strip distribution being preserved at least until the

junction reference planes PP’ and PP”.
2) set up a network of circulating currents unknown in magni-

tude w~lch will effectively redistribute the previously mentioned

assumed distribution.
3) Evaluate the magnitudes of the circulating currents such that

the governing equation is satisfied by the current distribution cb-

tained from the superposition of the assumed and circulating cur-
rents.

4) 13valuate the required inductances from the now known cur-
rent distribution.

The moment method of implementation of this formulation re-
sults in the semi-infinite strips (see Fig. 3 ) being divided into sub-

strips. The current is assumed to be constant in each of these sub-

strips, their magnitudes are those obtained for the infimte-strip
distribution, estimated by the method images [12]. Continuity of
current in the symmetrical bend is preserved as shown in Fig. 3(a),

where the subetrips meet along the bend diagonal F’.4 and the
incoming z-directed current in each substrip of X strip flows as the
outgoing @irected current in the corresponding substrip of the

Y strip. If the two X and Y strips are not of equal width, the detailed

continuity is preserved by current flow along the diagonal. For the

present, we only consider the symmetrical bend case where this

flow is absent.

The circulating currents, in the moment method take the form of

rectangular current loops which are contiguous, as shown in Fig.

3(b) for the bend. These currents redistribute the emumed current
distribution of Fig. 3 (a) to satisfy the governing equation. While
the skin-effect equation [9] could be used here, a simpler method
is to require the l?no,~al penetrating into the strip to zero. This is

. .
obtained by estlmatmg B“.,~al (or H.) at the center of each loop
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Fig. 3. (a) Discretization of infinite-strin current into substrips, with
detailed continuity preserved at bend diagonal. The substrip curr~nts
are assumed constant. (b) Discretization of circulating currents In!o
contiguous loops. Superposition of these as shown in (a) results m
current redistribution.
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current, due to itself, all the other unknown loop currents, and the

known substrip currents, and setting thk to zero. The resultant

matrix equation is inverted to give the magnitude of the 1000 cur-
rents. Th&

B.”

where

B.”
Iil

r%,rm
‘i-j

Gi~ (rJr~ )

M
1.”
G.B(r,/r~)

N

B.~.~,1 at the center of the nth 100P;
unknown value of theith Ioop current;
position of the centers of the ith and nth loops;

termination point of semi-infinite line;

Green’s function for B. at rtt~ loop center due to the
ith loop (see Appendix I);

total number of loops;
known value of the ith substrip current;

Green’s function of 1?, at thenth loop center due to
a semi-infinite substrip ending at ri, over an infinite
ground plane (see Appendix II);
number of substi-ips in both X and Y strips.

This leads to a matrix equation of the form

p[l = f (3)

from whlch~i, theloop currents are evaluated.

To calculate the inductance, note that

/
~.~dV =LI~2. (4)

Thestored energy given bythisequation is calculated at each side
of each loop, and summed to give the total stored energy. The
current density~at each side of each loop is the net currentdensity,
due to the loop current, its adjacent contiguous loop current, and
the substr~p current (if either or both are present). The vector
potential ~isdueto allthe other loops, substrip~, and theopposite

side of the loop, and also due to the self-potential. The current Ii

is the total current flowing into or out of the corner.
~hecontiguous currentloop sextendfro mQQ’toliX’ [see Fig.

3(b)], and from (I), the subtraction of theinfinite-stripi nductance

needs to be carried out in the inductance estimates for the rec-
tangular regions QQ’to PP’and PP”to RR’. For these regions (1)
and (4) become

L. =Lti, – [1, +lj)Lm =*
l]

~,~, dV – Jxm.~mdv. (5)

~Tow’let

“l, =x,+-x.

where ~.is the excess potential and

#lt=Je+7m

where~. is the excess current. Thus

/
L.=* ~(~,.~m+~~.~e+~,.j,)dV. (6)

For the rectangularr egionPP’’PP’, the whole of the inductance as
given by (4) is estimated, andthe sum of these inductances is equal
to therequired value L~.

We note that thevector potential~ due to a filamentary current
at any point on itself results in a singularity which cannot be evalu-
ated. Thus it becomes necessary to assume that the loop current is

distributed evenly over each side, now assumed to be a strip as
shown in Fig. 5 and the mean position of which is the rectangular
loop filament. Asimilar scheme is necessary to estimate the vector

potential of the semi-infinite substrip on itself. The result of thk
scheme for the loop currents is that the inductance is calculated
with each side of each loop current assumed to be distributed in

strip form and therefore each loop is assumed to start (and end) at
the edge of this strip. Thus the reference planes for the discontinuity
and the associated circulating currents are unambiguously defined.

The necessary functions for estimating~ in equations (4) and
(6) are given in the Appendices. The volume integrals in these
equations become line integrals when the net current due to the
loop, its adjacent contiguous loop current and substrip c~~rrents (if

either or both are present) are assumed to be uniform over the

width of loop (strip) side.
Thus

J
~.jn.,dV =

/
~ .~.,, dl = 21, (~ .~n., ) (7)

u

where 21i is the loop side length. However, when this integral is

evaluated over thesidedue to its own vector potential, this is modi-
fiedas shown in (A.3) (see Appendix I).

IV. RESULTS AND DISCUSSION

A computer program wm developed for estimating the discontinu-

ity inductance of symmetric righ&angle bends. The parameters that
form the input data are the w/h raiio, and the coordinates of the

rectangles shown in Fig. 1. The number of substrips and current
loops are also variables. As the substrip number N increases, the

number of current loops M increases as some function of the square
of N. Thus runs were’carried out foi-Nvaryingfrom3 to6, and the

corresponding M varying from 16 to 85, for unit distanc?e boundaries

(QQ’ and RR’) from the reference planes (PP’ and PP”, respec-

tively). The boundary distances may beincreased atthe expense of

substrip number, and some further calculations were also performed

with these for comparison with N varying up to 5 and M with a

maximurri of 120. The infinite-sti-ip inductances L~ for the vhrious

zu/h for N varying from 3 to 6 were in error from about 4 percent

to less than 2 percent. The results obtained are summarized in
Fig. 4 after extrapolation, zmdareexpected to beaccurate to within
a few percent (expressed in terms of width of strip asunity),rnainly

due to the poor discretization.
Aleo shown in Fig. 4 are experimental results obtained by the

method reported elsewhere [7]. These data were obtained by com-
paring the resonant conditions of symmetrical “L” shaped resonators

of l/2 or 3A/2 effective overall length with corresponding linear

I

Fig. 4. Variation of normalized inductance of microstrip corner Lb
with w/h ratio. Normalization is over roLG ---: theory; I: experi-
mental bars.
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resonators. Site for these modes of resonance there is a voltage

node at the corner, the effect of the corner capacitance ob may be
ignored and the corner inductance Lb can be determined from the

difference in effective length of the two types of resonator. The end

effects at the open ends including the effect of the input coupliig,

and the microstrip velocity were determined by an initial measure-

ment involving linear resonators of different lengths. The measure-
ments were performed on 0.660-mm alumina in the frequency range
4–10 GHz, and the results extrapolated to zero frequency. The accu-
racy of measurement, expressed as a line length, is estimated as

*1O pm.
The experimental and predicted values agree closely for values

of w/L < 1.5, but diverge for larger w/L. The effect of the crude
discretizationof thetheoretical model worsens as the width of the
strip and hence that of each substrip becomes comparable to the
ground plane spacing, leading to errors in the predicted values.

A clear limitation of thk method is that the quasi-static formula-
tion cannot predict frequency variation of the inductance values.
However, the experimental work outlined above indicates that the
quaai-static parameters have a useful range of approximate validlty.
It is hoped to report on these aspects of measurements in greater
detail in a later publication.

APPENDIX I
GREEN’S FUNCTIONS FOR CURRENT LOOP

Field st,rength H, at ~(zl,~,,zl) due to current loop unit current
in thez = Oplaneis calculated:

H,’ (due toz-directed currents)

1

-{[

(z, – Z,)(y, – t,) (2, + l,)(yl – 1*)——
47r { (g, – 12)2 + Z1’)r, – { (?A – t,)’ + 2,’}?-21
[(Z1 – 11)(Y1 + 12) (w -1- 11) (v, + 12)

—

{ (!41 + 12)’ + Z1’}ra – { (Y1 + L)’ + Z1’}7U 11
HZU (due to y-directed currents)

1

{[

(z, – 11) (y, – t,) (% – L)(Y1 + 12)——

G {(ZI – 11)’ +Z,’]rl – {(Z, + 4)’ +Z1’]T3 1
[

_ (u + l,)(y, – t,) (z, + z,) (y, + 1,)

{(z, – 1,)’ +2?) )73 – {(z, + 4)’ +2,’] 7-41}
GzB (0/r, ) = B, (Zl,y,,zl) = ~, (~,z + H.u )

where

~lz = (ZI — 11)! + (yl — L2)2 + 212

r# = (Zl + 11)2 + (~1 — t2)2 + 212

r32 = (~1 — h)z + (YI + 12)2 + Zlz

r4z = (xl + 11)2 + (Y1 + 12)2 + 212.

(Al)

The vector potential ~ now has two components: Az and A%.
These are given by

Thus

~ = (aaAz + tiVAv) (A.2 )

where ti.,tiy are unit x- and y-directed vectors.

If the vector potential ~ due to the loop side is to be calculated
on itself, it is necessary to assume the current on that side is uniform

over a strip 2tz wide (see Fig. 5). Then the product f ~. ~ dl is
estiiated (Z = 1):

! [
& + (112 + 1.22)1/2 z,+ (P + 1?2)1/2

i.fdl = ; lllog +1, log
,0 If 1, 11, ‘

(A.3)

Fig. 5.

.Z

Fig. 6.

APPENDIX II
GREEN’S FUNCTIONS FOR SEMI-INFINITE LINE

In this case we assume the semi-infinite line is filamentary with
unit current and the ground plane can be replaced by the image

dktance 2h, with the return unit current (Fig. 6). It can be shown

that

(A.4)

where

ry = yp + z~~

r22 = y,’ + (Z* + 2h)’.

It can also be shown that the vector potential ~ at P is given by
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