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standard-size circular waveguide. The nonreciprocity curve is the
difference between the forward and reverse insertion-loss curves.
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1016 ¢ 3,

/
sibly a better substrate for millimeter-wave transmission would be
quartz. Unfortunately, however, quartz is not compatible with the
recrystallization growth technique, because its thermal expansion
coefficient is considerably different than the coefficient for InSb,
and the InSb films tend to peel away from the quartz substrate.

FARADAY-ROTATION MODE

The Faraday-rotation mode configuration is shown in Fig. 1(b),
and results for the Faraday-rotation mode are shown in Fig. 3.
As is evident, large values of nonreciprocity are easily obtainable
at relatively low magnetic fields. Very disappointing, however,
are the relatively large values of insertion loss encountered, albeit
they are significantly lower than the values of insertion loss for
the field-displacement mode. The peak in transmission is expected
and corresponds to the magnetic-field value at which the Faraday
rotation in the InSb film is approximately equal to 45°. It is near
this magnetic-field value that the nonreciprocity is a maximum
and would be the operating point of a practical isolater. The theory
of Faraday rotation in thin films, which is discussed in [471~[7],
accounts for the large values of rotation by considering multiple
reflections within the film. The results in Fig. 3 were obtained on
samples in standard size TE.;; commercial waveguide (diameter is
3.58 mm). Measurements taken on samples in oversized guide (di-
ameter is 7.1 mm) did not produce significantly different results.
Essentially, the only method available to decrease the insertion loss is
to make the film thinner. However, as the films are made thinner,
the mobilities decrease and the extrinsic carrier concentration in-
creases. The thickness of the films for which data are shown in Fig. 3
is 2.1 um and is essentially as thin as the films can be grown and still
have acceptable mobilities and carrier concentrations. The insertion
loss due to a bare substrate in the Faraday-rotation mode is about
2 dB. A small decrease in insertion loss could be realized by using
a less lossy substrate material.

CONCLUSIONS

Large values of nonreciprocity were measured for the InSb films
in the Faraday-rotation mode, and these large values were ob-
tainable at reasonably low values of the applied magnetic field. An
insertion loss of 9 dB was measured, which includes 2 dB of atten-
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uation due to the substrate, at a nonreciprocity of 10 dB. Commer-
cially available ferrite isolators in this frequency range have insertion
losses of 1.0 dB. Possibly, with a less lossy substrate material and
with a high-mobility film which is 1 um or less thick, this figure
could be approached. Insertion loss with the field-displacement
mode was disappointingly large and all attempts to decrease it failed.
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Moment Method of Calculating Discontinuity Inductance
of Microstrip Right-Angled Bends

A. GOPINATH, MEMBER, IEEE, AND B. EASTER

Abstract—A method of estimating quasi-static discontinuity in-
ductances in microstrip lines is outlined. Numerical results for
symmetric right-angle bends are presented and compare well with
experimental results.

I. INTRODUCTION

The study of microstrip discontinuities has resulted in several
papers [17-[4] which evaluate the capacitive components of the
discontinuity equivalent circuits, under static conditions. Estimat-
ing the induetive components of these equivalent circuits has received
little attention to the present time. One method based on charge
estimates [5], [6] is not rigorous and the results and trends pub-
lished are not in agreement with experimental measurements ob-
tained by the method of a previous publication [7]. A second method
is the evaluation of these inductances based on a skin-effect formu-
lation [87], but several difficulties have been encountered in extend-
ing this method to the accurate evaluation of digcontinuity induct-
ances. These have currently been resolved, and results are to be
published shortly [97. The present short paper outlines an alternative
method based on an extension of the moment method, using current
loops as elements. The method also incorporates the excess current
(charge) technique used by Benedek and Silvester [107] for preserv-
ing the accuracy of calculated parameters. This short paper outlines
the formulation used and presents specific results for symmetric
right-angled bends. It is hoped a subsequent paper will present a
comprehensive set of results of various other discontinuities.

II. STATEMENT OF PROBLEM

The moment method of inductance estimation outlined here can
be used for a variety of strip geometries, but is illustrated only for
the case of the symmetrical right-angle bend. We first define in the
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current

Fig. 1. Plan view of symmetric microstrip bend showing reference planes
PP’', PP"” and QQ’, RR’. Strip width is w, ground plane spacing A.

Lpf2

]
1
|
] A
f
|
P tpt

Fig. 2.

. Equivalent circuit of the symmetric right-angled bend in micro-
strip, at the references planes PP’ and PP

’ as defined in Fig. 1.

context of this bend the equivalent-circuit components that require
evaluation. In Fig. 1, the plan view of the microstrip bend is shown.
The bend oceurs at the junction of two semi-infinite strips (X and
Y strips in Fig. 1). It is convenient to define the inductance of the
bend with respect to the reference planes PP’.and PP”. However,
the fringing fields associated with the bend will extend a significant
distance beyond these reference planes. In order to calculate the
inductance it is necessary to introduce the reference planes QQ’,RR’
at distances [, from PP’ and PP’ respectively, where the current
and field distributions differ negligibly from the infinite-strip dis-
tribution. The bend inductance L, with respect to PP!,PP" can
then be determined from the total magnetic field energy between
QQ',RR' less an appropriate deduction for the lengths I;,ls:

Ly = Log — (Wl + LL) (1)

where L., is the inductance per meter of the infinite uniform strip.

The total bend capacitance C; is similarly defined, and from the
symmetry of the structure, the equivalent circuit of the bend dis-
continuity is usually given as in Fig. 2 by a 7 network. With this
definition for Ls, it is possible for its numerical value to become
negative.

Benedek and Silvester [10] replace the series inductances in Fig. 2
by equivalent line lengths, which however, are not given. Associated
with these line lengths are capacitances which must be subtracted
from C3, which then changes the value of the shunt capacitance of
their equivalent circuit. Their calculations, however, only provide
C, and not this modified capacitance, and therefore are valid only in
the circuit given in Fig. 2.

III. FORMULATION OF PROBLEM AND METHOD
OF SOLUTION

It will be assumed that the substrate of the microstrip line is
nonmagnetic, so that the presence of the substrate may be ignored
for the purpose of calculating the quasi-static inductance,

In order to obtain values which are relevant to high frequency
applications, it will be further assumed that the conducting strips
and ground plane have near-perfect conductivity, so that skin effect
is fully established. It follows that the eurrents in the structure may
be considered to be surface currents, infinitely thin, having zero
divergence, and distributed such that the magnetic field normal to
the conductor surface is zero.

For the two-dimensional problem of straight uniform microstrip,
the correct distribution and inductance may be determined from
the charge and capacitance of a related electrostatic problem [117,
[127]. In the three-dimensional case of a discontinuity structure this
procedure is not available and it is necessary to work directly in
terms of the current distribution which is determined by means of
a governing equation corresponding to the condition outlined above.
The magnetic field energy of the strueture is then computed.
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If the reference planes QQ',RR’ are chosen so as to include a
satisfactorily large proportion of the fringing field of the discon-
tinuity, then (1) will involve the relatively small difference of two
nearly equal numbers. However, the resulting loss of accuracy may
be reduced by a method analogous to that suggested by Benedek
and Silvester [10].

The procedure for caleulating the inductance may be formulated
in the following manner.

1) Set up an assumed ecurrent distribution through the dis-
continuity which maintains detailed current continuity and results
in the infinite-strip distribution being preserved at least until the
junction reference planes PP’ and PP”.

2) Set up a network of circulating currents unknown in magni-
tude which will effectively redistribute the previously mentioned
agsumed distribution.

3) Evaluate the magnitudes of the circulating currents such that
the governing equation is satisfied by the cwrrent distribution ch-
tained from the superposition of the assumed and circulating cur-
rents.

4) Evaluate the required inductances from the now known cur-
rent distribution.

The moment method of implementation of this formulation re-
sults in the semi-infinite strips (see Fig. 3) being divided into sub-
strips. The current is assumed to be constant in each of these sub-
strips, their magnitudes are those obtained for the infinite-strip
distribution, estimated by the method images [12]. Continuity of
current in the symmetrical bend is preserved as shown in Fig. 3(a),
where the substrips meet along the bend diagonal PA and the
incoming z-directed current in each substrip of X strip flows as the
outgoing y-directed current in the corresponding substrip of the
Y strip. If the two X and ¥ strips are not of equal width, the detailed
continuity is preserved by current flow along the diagonal. For the
present, we only consider the symmetrical bend case where this
flow is absent.

The circulating currents, in the moment method take the form of
rectangular current loops which are contiguous, as shown in Fig.
3(b) for the bend. These currents redistribute the assumed current
distribution of Fig. 3(a) to satisfy the governing equation. While
the skin-effect equation [9] could be used here, a simpler method
is to require the Bpoma) penetrating into the strip to zero. This is
obtained by estimating Buoma1 (or H.) at the center of each loop
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Fig. 3.  (a) Discretization of infinjte-striv current into substrips, with
detailed continuity preserved at bend diagonal. The substrip currents
are assumed constant. (b) Discretization of circulating currents into
contiguous loops. Superposition of these as shown in (a) results in
current redistribution.
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current, due to itself, all the other unknown loop currents, and the
known substrip currents, and setting this to zero. The resultant
matrix equation is inverted to give the magnitude of the loop cur-
rents. Thus

M =N
B =0 = 2 L'GEri/ra) + 2 12GB(r,/rn) (2)
=1 =1
where
B, Bromal at the center of the nth loop;

It unknown value of the 7th Ioop current;

TouTn position of the centers of the ¢th and nth loops;
r; termination point of semi-infinite line;
GiB(r:/r.) Green’s function for B, at nth loop center due to the

7th loop (see Appendix I);
M total number of loops;

122 known value of the 7th substrip current;

GB(r,/rn) Green’s function of B, at the nth loop center due to
a semi-infinite substrip ending at r;, over an infinite
ground plane (see Appendix I1);

N number of substrips in both X and Y strips.

This leads to a matrix equation of the form
PIl=f 3

from which I*, the loop currents are evaluated. -
To calculate the inductance, note that

/ AJdv = LIz )

The stored energy given by this equation is calculated at each side
of each loop, and summed to give the total stored energy. The
current density J at each side of each loop is the net current density,
due to the loop current, its adjacent contiguous loop current, and
the substrip current (if either or both are present). The vector
potential A is due to all the other loops, substrips, and the opposite
side of the loop, and also due to the self-potential. The current I,
is the total current flowing Into or out of the corner.

he contiguous current loops extend from QQ’ to RR’ [see Fig.
3(b)7, and from (1), the subtraction of the infinite-strip inductance
needs to be carried out in the inductance estimates for the rec-
tangular regions Q@' to PP’ and PP’ to RR'. For these regions (1)
and (4) become

1 . . w
Le =Ly — (L + L)L = IE ‘/AtJt dV — /Am-Jm dVi. (8)
¢

Now let
A, =4.+ 4.
where A, is the excess potential and
Jo=J. +J.
where J, is the excess current. Thus

1 R - .
L, = T / (Aedo +Ande + Aced.) dV. 6)
¢ v

For the rectangular region PP"'PP’, the whole of the inductance as
given by (4) is estimated, and the sum of these inductances is equal
to the required value L;. _

We note that the vector potential A due to a filamentary current
at any point on itself results in a singularity which cannot be evalu-
ated. Thus it becomes necessary to assume that the loop eurrent is
distributed evenly over each side, now assumed to be a strip as
shown in Fig. 5 and the mean position of which is the rectangular
loop filament. A similar scheme is necessary to estimate the vector
potential of the semi-infinite substrip on itself. The result of this
scheme for the loop currents is that the inductance is calculated
with each side of each loop current assumed to be distributed in
strip form and therefore each loop is assumed to start (and end) at
the edge of this strip. Thus the reference planes for the discontinuity
and the associated circulating currents are unambiguously defined.

The necessary functions for estimating 4 in equations (4) and
(6) are given in the Appendices. The volume integrals in these
equations become line integrals when the net current due to the
loop, its adjacent contiguous loop current and substrip currents (if
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either or both are present) are assumed to be uniform over the
width of loop (strip) side.
Thus

./.A-j,de =/A‘inetdlﬁ-’2l;(A-'inet) (7)

where 2I; is the loop side length. However, when this integral is
evaluated over the side due to its own vector potential, this is modi-
fied as shown in (A.3) (see Appendix I).

IV. RESULTS AND DISCUSSION

A computer program was developed for estimating the discontinu-
ity inductance of symmetric right-angle bends. The parameters that
form the input data are the w/h ratio, and the coordinates of the
rectangles shown in Fig. 1. The number of substrips and current
loops are also variables. As the substrip number N increases, the
number of current loops M increases as some function of the square
of N. Thus runs were carried out for N varying from 3 to 6, and the
corresponding M varying from 16 to 85, for unit distance boundaries
(QQ’ and RR’) from the reference planes (PP’ and PP", respec-
tively). The boundary distances may be increased at the expense of
substrip number, and some further calculations were also performed
with these for comparison with N varying up to 5 and M with a
maximumni of 120. The infinite-strip inductances L., for the various
w/h for N varying from 3 to 6 were in error from about 4 percent
to less than 2 percent. The results obtained are summarized in
Fig. 4 after extrapolation, and are expected to be accurate to within
a few percent (expressed in terms of width of strip as unity), mainly
due to the poor discretization.

Also shewn in Fig. 4 are experimental results obtained by the
method reported elsewhere [7]. These data were obtained by com-
paring the resonant conditions of symmetrical “L’”’ shaped resonators
of A/2 or 3x/2 effective overall length with corresponding linear
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Fig. 4. Variation of normalized inductance of microstrip corner L
with w/h ratio. Normalization is over wLw. -—: theory; 1. experi-
mental bars.
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resonators. Since for these modes of resonance there is a voltage
node at the corner, the effect of the corner capacitance C, may be
ignored and the corner inductance L, can be determined from the
difference in effective length of the two types of resonator. The end
effects at the open ends including the effect of the input coupling,
and the microstrip velocity were determined by an initial measure-
" ment involving linear resonators of different lengths. The measure-
ments were performed on 0.660-mm alumina in the frequency range
4-10 GHz, and the results extrapolated to zero frequency. The accu-
racy of measurement, expressed as a line length, is estimated as
410 pm,

. The experimental and predicted values agree closely for values
of w/L < 1.5, but diverge for larger w/L. The effect of the crude
discretization of the theoretical model worsens as the width of the
strip and hence that of each substrip becomes comparable to the
ground plane spacing, leading to errors in the predicted values.

A clear limitation of this method is that the quasi-static formula-

tion cannot predict frequency variation of the inductance values.
However, the experimental work outlined above indicates that the
quasi-static parameters have a useful range of approximate validity.
It is hoped to report on these aspects of measurements in greater
detail in a later publication.

APPENDIX I
GREEN’S FUNCTIONS FOR CURRENT LOOP

Field strength H, at P (2y,11,2:) due to current loop unit current
in the z = 0 plane is calculated:

H 2 (due to z-directed currents)

_ l{[ (T~ h) (g — la) _ (o1 +h)ln ~ k)
dr |L{n — W2+ 22 {(n — B)?2 + 2t

_ @ =W+ 1) G Wy + L) ]
fn + L2+l [+ L2422
Hy (due to y-directed currents)
_ L{ @=W =k (@ =h)+b)
o= U+ 22 (3 + 1)+ 22

4r
| @t —b) @+t L)
{ry — L2 4z {@+h)?+ 2t

GB(0/r) = B.(x,y1,21) = uo(H= + H¥) (A.1)
where
n? = (2 — W)+ (g — L) + 2
r = (& +h)?+ (g~ b))+
g = (@ — L)+ (g B)? + 2
= (@ + L)+ (n+ L)+ ek

The vector potential A now has two components: A, and A4,
These are given by

f_o_[l (o — L) +n

o (1 +h) + e
g (@ +4L) +ry

(n +b) +rs
(yi + 1)+

|8 (@ —h) +rs

—1
4, = ”—O[log (g — L) 4+
4

(yx - 12) +n ToE

Thus

A= (G:Az + ayAy) (A.2)
where @.,d, are unit z- and_y-directed vectors.

If the vector potential A due to the loop side is to be calculated
on itself, it is necessary to assume the current on that side is uniform
over a strip 2l, wide (see Fig. 5). Then the product [A-Idl is
estimated (I = 1):

. 2 L 1.2 1,2 )12 1 1,2 122 1/2
f ATl = 2| 1o 2t 2 H BT +l210g1_+_(1_4f_)__]‘
self l2 ll lg
(A.3)
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APPENDIX II
GREEN’S FUNCTIONS FOR SEMI-INFINITE LINE

In this case we assume the semi-infinite line is filamentary with
unit current and the ground plane can be replaced by the image
distance 2k, with the return unit current (Fig. 6). It can be shown
that

G‘;B (0/1'1) = Bz at P(xl,yl,zl)

Ko %
4| [oy + (22 + 212 (22 + r2)1R2

h
[z + (2 + 8P (e + mm] (A-4)

where
=y’ 2k
rt =yt + (21 + 2h)%
1t can also be shown that the vector potential A at P is given by

X + x2 + 7\2 1/2
An (@) = M0 Jog T @ )R

. A.
dr o ¥ (af +ron (A.5)
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